+ Yorum Gönder
Biyografi ve Edebiyatçıların Hayatları Forumunda Archimedes - Kısaca Biyografisi Konusunu Okuyorsunuz..
  1. HAYAT
    Devamlı Üye

    Archimedes - Kısaca Biyografisi








    Archimedes


    Roma generali Marcellus, Sirakuza'yı kuşattığında, Archimedes (M.Ö.287-212) adlı bir mühendisin yapmış olduğu silahlar nedeniyle şehri almakta çok zorlanmıştı. Bunların çoğu mekanik düzeneklerdi ve bazı bilimsel kurallardan ilham alınarak tasarlanmıştı. Örneğin, makaralar yardımıyla çok ağır taşlar burçlara kadar çıkarılıyor ve mancınıklarla çok uzaklara fırlatılıyordu. Hattâ Archimedes'in aynalar kullanmak suretiyle Roma donanmasını yaktığı da rivayet edilmektedir. Ancak bütün bunlara karşın M.Ö. 212 yılında Romalılar Sirakuza'yı zapt ettiler ve şehrin diğer ileri gelenleriyle birlikte Archimedes'i de öldürdüler. Söylendiğine göre, bu sırada Archimedes toprak üzerine çizdiği bir problemin çözümünü düşünüyormuş ve yanına yaklaşan Romalı bir askere oradan uzaklaşmasını ve kendisini rahat bırakmasını söylemiş; ancak asker Archimedes'e aldırmayarak hemen öldürmüş. Tarihin nadir olarak yetiştirdiği bu çok yetenekli bilim adamının öldürülüşü Romalı generali de çok üzmüş.

    Archimedes hem bir fizikçi, hem bir matematikçi, hem de bir filozoftur. Gençliğinde bir süre İskenderiye'de bulunmuş, burada Eratosthenes ile arkadaş olmuş ve daha sonra da onunla mektuplaşmıştır. Archimedes'in mekanik alanında yapmış olduğu buluşlar arasında bileşik makaralar, sonsuz vidalar, hidrolik vidalar ve yakan aynalar sayılabilir. Bunlara ilişkin eserler vermemiş, ancak matematiğin geometri alanına, fiziğin statik ve hidrostatik alanlarına önemli katkılarda bulunan pek çok eser bırakmıştır.

    Geometriye yapmış olduğu en önemli katkılardan birisi, bir kürenin yüzölçümünün 4r2 ve hacminin ise 4/3 r3 eşit olduğunu kanıtlamasıdır. Bir dairenin alanının, tabanı bu dairenin çevresine ve yüksekliği ise yarıçapına eşit bir üçgenin alanına eşit olduğunu kanıtlayarak pi'nin değerinin 3 l/7 * 3 10/71 arasında bulunduğunu göstermiştir.

    Archimedes'in en parlak matematik başarılarından biri de, eğri yüzeylerin alanlarını bulmak için bazı yöntemler geliştirmesidir. Bir parabol kesmesini dörtgenleştirirken sonsuz küçükler hesabına yaklaşmıştır. Sonsuz küçükler hesabı, bir alana tasavvur edilebilecek en küçük parçadan daha da küçük bir parçayı matematiksel olarak ekleyebilmektir. Bu hesabın çok büyük bir tarihî değeri vardır. Sonradan modern matematiğin gelişmesinin temelini oluşturmuş, Newton ve Leibniz'in bulduğu diferansiyel ve entegral hesap için iyi bir temel oluşturmuştur.

    Archimedes Parabolün Dörtgenleştirilmesi adlı kitabında, tüketme metodu ile bir parabol kesmesinin alanının, aynı tabana ve yüksekliğe sahip bir üçgenin alanının 4/3'üne eşit olduğunu ispatlamıştır.

    İlk defa denge prensiplerini ortaya koyan bilim adamı da Archimedes'dir. Bu prensiplerden bazıları şunlardır:

    1. Eşit kollara asılmış eşit ağırlıklar dengede kalır.

    2. Eşit olmayan ağırlıklar eşit olmayan kollarda aşağıdaki koşul sağlandığında dengede kalırlar: f . a = f1. b

    Bu çalışmalarına dayanarak söylediği "Bana bir dayanak noktası verin Dünya'yı yerinden oynatayım." sözü yüzyıllardan beri dillerden düşmemiştir.

    Archimedes, kendi adıyla tanınan sıvıların dengesi kanununu da bulmuştur. Söylendiğine göre, bir gün Kral İkinci Hieron yaptırmış olduğu altın tacın içine kuyumcunun gümüş karıştırdığından kuşkulanmış ve bu sorunun çözümünü Archimedes'e havale etmiş. Bir hayli düşünmüş olmasına rağmen sorunu bir türlü çözemeyen Archimedes, yıkanmak için bir hamama gittiğinde, hamam havuzunun içindeyken ağırlığının azaldığını hissetmiş ve "Buldum, buldum" diyerek hamamdan fırlamış. Acaba Archimedes'in bulduğu neydi? Su içine daldırılan bir cisim taşırdığı suyun ağırlığı kadar ağırlığından kaybediyordu ve taç için verilen altının taşırdığı su ile tacın taşırdığı su mukayese edilerek sorun çözülebilirdi.

    Archimedes'in araştırmalarından önce, tahtanın yüzdüğü ama demirin battığı biliniyordu; ancak bunun nedeni açıklanamıyordu. Archimedes'in bu kanunu doğada tesadüflere yer olmadığını, her zaman aynı koşullarda aynı sonuçlara ulaşılacağını göstermiştir. Archimedes, yirmi üç yüzyıl önce, modern bilimsel yöntem anlayışına çok yakın bir anlayışla, bugün de geçerli olan statik ve hidrostatik kanunlarını bulmuş ve bu katkılarıyla bilim tarihinin en büyük üç kahramanından birisi olmaya hak kazanmıştır.








  2. Gizliyara
    FoRuMaciL Security





    Archimedes (Arşimet)




    Arşimet (Archimedes), M.Ö. 287 - 212 yılları arasında yaşamış Sicilya doğumlu Yunan matematikçi, fizikçi, astronom, filozof ve mühendis. Bir hamamda yıkanırken bulduğu iddia edilen suyun kaldırma kuvveti bilime en çok bilinen katkısıdır ancak pek çok matematik tarihçisine göre integral hesabın babası da Arşimet'tir

    Roma generali Marcellus, Sirakuza'yı kuşattığında, Archimedes adlı bir mühendisin yapmış olduğu silahlar nedeniyle şehri almakta çok zorlanmıştı. Bunların çoğu mekanik düzeneklerdi ve bazı bilimsel kurallardan ilham alınarak tasarlanmıştı. Örneğin, makaralar yardımıyla çok ağır taşlar burçlara kadar çıkarılıyor ve mancınıklarla çok uzaklara fırlatılıyordu. Hatta Archimedes'in aynalar kullanmak suretiyle Roma donanmasını yaktığı da rivayet edilmektedir. Ancak bütün bunlara karşın M.Ö. 212 yılında Romalılar Sirakuza'yı zapt ettiler ve şehrin diğer ileri gelenleriyle birlikte Archimedes'i de öldürdüler. Söylendiğine göre, bu sırada Archimedes toprak üzerine çizdiği bir problemin çözümünü düşünüyormuş ve yanına yaklaşan Romalı bir askere oradan uzaklaşmasını ve kendisini rahat bırakmasını söylemiş; ancak asker Archimedes'e aldırmayarak hemen öldürmüş. Tarihin nadir olarak yetiştirdiği bu çok yetenekli bilim adamının öldürülüşü Romalı generali de çok üzmüş.


    Archimedes hem bir fizikçi, hem bir matematikçi, hem de bir filozoftur. Gençliğinde bir süre İskenderiye'de bulunmuş, burada Eratosthenes ile arkadaş olmuş ve daha sonra da onunla mektuplaşmıştır. Archimedes'in mekanik alanında yapmış olduğu buluşlar arasında bileşik makaralar, sonsuz vidalar, hidrolik vidalar ve yakan aynalar sayılabilir. Bunlara ilişkin eserler vermemiş, ancak matematiğin geometri alanına, fiziğin statik ve hidrostatik alanlarına önemli katkılarda bulunan pek çok eser bırakmıştır.


    Geometriye yapmış olduğu en önemli katkılardan birisi, bir kürenin yüzölçümünün 4?r2 ve hacminin ise 4/3 ?r3 eşit olduğunu kanıtlamasıdır. Bir dairenin alanının, tabanı bu dairenin çevresine ve yüksekliği ise yarıçapına eşit bir üçgenin alanına eşit olduğunu kanıtlayarak pi'nin değerinin 3 l/7 ve 3 10/71 arasında bulunduğunu göstermiştir.


    Archimedes'in en parlak matematik başarılarından biri de, eğri yüzeylerin alanlarını bulmak için bazı yöntemler geliştirmesidir. Bir parabol kesmesini dörtgenleştirirken sonsuz küçükler hesabına yaklaşmıştır. Sonsuz küçükler hesabı, bir alana tasavvur edilebilecek en küçük parçadan daha da küçük bir parçayı matematiksel olarak ekleyebilmektir. Bu hesabın çok büyük bir tarihi değeri vardır. Sonradan modern matematiğin gelişmesinin temelini oluşturmuş, Newton ve Leibniz'in bulduğu diferansiyel ve entegral hesap için iyi bir temel oluşturmuştur.


    Archimedes Parabolün Dörtgenleştirilmesi adlı kitabında, tüketme metodu ile bir parabol kesmesinin alanının, aynı tabana ve yüksekliğe sahip bir üçgenin alanının 4/3'üne eşit olduğunu ispatlamıştır.


    İlk defa denge prensiplerini ortaya koyan bilim adamı da Archimedes'dir. Bu prensiplerden bazıları şunlardır:


    Eşit kollara asılmış eşit ağırlıklar dengede kalır.

    Eşit olmayan ağırlıklar eşit olmayan kollarda aşağıdaki koşul sağlandığında dengede kalırlar: f1 · a = f2 · b

    Bu çalışmalarına dayanarak söylediği "Bana bir dayanak noktası verin Dünya'yı yerinden oynatayım." sözü yüzyıllardan beri dillerden düşmemiştir.


    Archimedes, kendi adıyla tanınan sıvıların dengesi kanununu da bulmuştur. Söylendiğine göre, bir gün Kral II Hieron yaptırmış olduğu altın tacın içine kuyumcunun gümüş karıştırdığından kuşkulanmış ve bu sorunun çözümünü Archimedes'e havale etmiş. Bir hayli düşünmüş olmasına rağmen sorunu bir türlü çözemeyen Archimedes, yıkanmak için bir hamama gittiğinde, hamam havuzunun içindeyken ağırlığının azaldığını hissetmiş ve "Buldum, buldum" diyerek hamamdan fırlamış. Acaba Archimedes'in bulduğu neydi? Su içine daldırılan bir cisim taşırdığı suyun ağırlığı kadar ağırlığından kaybediyordu ve taç için verilen altının taşırdığı su ile tacın taşırdığı su mukayese edilerek sorun çözülebilirdi.


    Archimedes'in araştırmalarından önce, tahtanın yüzdüğü ama demirin battığı biliniyordu; ancak bunun nedeni açıklanamıyordu. Archimedes'in bu kanunu doğada tesadüflere yer olmadığını, her zaman aynı koşullarda aynı sonuçlara ulaşılacağını göstermiştir. Archimedes, 23 yüzyıl önce, modern bilimsel yöntem anlayışına çok yakın bir anlayışla, bugün de geçerli olan statik ve hidrostatik kanunlarını bulmuş ve bu katkılarıyla bilim tarihinin en büyük üç kahramanından birisi olmaya hak kazanmıştır.




  3. Ziyaretçi
    Arşimet’in Hayatı
    Eski Yunan matematikçi ve fizikçisidir. (Syrakusai M.Ö. 287-ay.y. 212) Genç yaşta öğrenimini tamamlamak ve ünlü bilim adamı Eukleides’ in derslerini izlemek üzere Antik çağın kültür merkezi olan İskenderi‘ ye gitti. Yer kürenin çevresini zamanına göre çok iyi bir yaklaşımla veren Eratusthenes ile tanıştı. Yurduna döndükten sonra kendini tamamıyla ilmi çalışmalara adadı. Matematik, fizik ve astronomi üzerinde çalıştı.
    İlk olarak Arşimet daire çevresinin çapına oran olan pi sayısını,daire içine ve dışına çizilmiş düzgün çokgenler yardımıyla yaklaşıklıkla veren bir metot ortaya koydu. Çok büyük sayıları kolaylıkla belirtmeye yarayan bir yöntem bularak Yunan sayı sistemini geliştirdi. Yayların toplama ve çıkarma formüllerini buldu. Koniklerin (elips, parobol,hiperbol) kendi çevresinde dönmesiyle oluşan geometrik şekilleri inceledi. Arşimet ‘in mekanik alanda da başarıları vardır. Sonsuz vidanın hareketli makaranın, palanganın ve dişli çarkın bulucusu olarak tanınır. “Bana bir dayanak noktası gösterin dünyayı yerinden oynatayım” sözü Arşimet’e aittir.
    Kurumsal çalışmaları yanında söylenceleşmiş pratik çalışmalarıda vardır. Bunlardan en ünlüsü Syracusa kralı ve dostu Hieron ‘un kendisi için yaptırdığı altın taca başka bir maden karıştırıldığından kuşkulanarak Arşimet ‘ten taç bozulmadan bunu ortaya çıkarmasını istemesiyle ilgilidir. Arşimet bu sorun üstüme düşünür, ancak birşey bulamaz. Bir gün hamamda yıkanırken suyun vücudunun batan bölümünün hacmiyle orantılı bir kuvvetle yukarı doğru ittiğini bulur. Bu yolla tacın saf altından yapılıp yapılmadığını düşünen Arşimet büyük bir sevinçle çrılçıplak olrak sokağa fırlamış ve bağırmıştır: Eureka, Eureka (buldum, buldum )…
    Ayrıca Arşimet M.Ö. 215’te Konsal Marcellus komutasındaki Roma ordusuna karşı Syracua kentinin savunmasında yer aldı. Bu savunmada çok uzak mesafelere ok ve taş atan mekanik aletler yaptığı ve kurduğu ayna sistemiyle güneş ışınlarını Roma donanması üzerinde odaklayarak gemileri yaktığı söylenir. Herşeye rağmen Romalılar bir şans eseri Syracusa’ ya girdiler. Marcellus, askerlerine bu büyük adama iyi davranılmasını emretmiştir. Ancak Arşimet ‘I tanımayan bir asker bir problemin çözümüne iyice dalmış olan bilginin kendisine cevap vermemesi üzerine kızarak öldürdü.
    Arşimet Prensibi : cisimlerin sıvı ya da gaz ortamlar içerisindeki denge koşullarını açıklayan, fiziğin temel ilkelerinden biridir.
    Arşimet’in ortaya koyduğu bu ilkeye göre sıvı ya da gaz ortam içeresinde bulunan bir cismin ağırlığı, kendi hacmine eşit hacimdeki sıvının (gazın) ağırlığı kadar azalır. Eğer cismin yalnız bir bölümü sıvı (gaz) ortam içerisinde bulunursa ağırlığı kadar azalır. Buna göre hacmi V,ağırlığı G, ve yoğunluğu Q olan bir cismin sıvı (gaz)ortam içerisine kalan bölümün hacmi V, sıvının (gazın) yoğunluğuda Q ise cismin sıvı (gaz) ortam içerisindeki ağırlığı G=G-F’ dir. Böylece cismin ağırlığındaki azalmaya neden olan ve sıvı (gaz) tarafından yukarıya doğru etki ettirilen F kuvvetine kaldırma kuvveti denir. Bu kuvvet cismin, sıvı(gaz) içinde kalan bölümün hacmi kadar hacimdeki sıvının ağırlığına eşit olduğundan Arşimet ilkesi matematiksel olarak :
    F=VQ-V’Q’=(V-V’ )Q=V’Q’ Bağıntılarıyla gösterilir.
    Arşimet ilkesinin ilginç sonuçlarından birisi, cismin sıvı ya da gaz ortam içerisinde bulunan bölümün hacmine eşit hacimdeki sıvı ya da gazı, bulundukları kaptan taşırmasıdır. Bu bakımdan kaldırma kuvveti, taşan sıvı ya da gazın ağırlığına eşittir. Bu olay, içinde su bulunan ölçekli bir kaba uygun bir cisim atılarak kolayca gözlenebilir.




+ Yorum Gönder


arşimet kısaca hayatı,  arşimet kısa hayatı,  archimedes hayatı kısaca,  arşimetin kısa hayatı